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Abstract
Based on the recently introduced orthonormal Hermite–Gaussian-type modes,
a general class of sets of non-orthonormal Gaussian-type modes is introduced,
along with their associated bi-orthonormal partner sets. The conditions between
these two bi-orthonormal sets of modes have been derived, expressed in terms
of their generating functions, and the relations with Wünsche’s Hermite two-
dimensional functions and the two-variable Hermite polynomials have been
established. A closed-form expression for Gaussian-type modes is derived
from their derivative and recurrence relations, which result from the generating
function. It is shown that the evolution of non-orthonormal Gaussian-type
modes under linear canonical transformations can be described by the same
mechanism as used for the evolution of orthonormal Hermite–Gaussian-type
modes, when, simultaneously, the associated bio-orthonormal modes are taken
into account.

PACS numbers: 02.30.Nw, 02.30.Uu, 42.30.Kq, 42.60.Jf

1. Introduction

Hermite and Laguerre polynomials and their associated Hermite–Gaussian and Laguerre–
Gaussian functions—or modes—are widely used in physics and information processing.
Schemes to convert Hermite–Gaussian into Laguerre–Gaussian modes by means of appropriate
linear canonical transformations, are well known; see [1, 2], for instance, in which mode
converters were presented in the field of optics. In some recent papers, generalizations of these
polynomials and their associated Gaussian functions were proposed; we mention Wünsche’s
Hermite and Laguerre two-dimensional polynomials and functions [3] and Abramochkin’s
Hermite–Laguerre–Gaussian modes [4]. For all these cases we have a generating function
that has a Gaussian form.
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In this paper, we propose a unified approach for the description of all polynomials and
functions that are characterized by a Gaussian-type generating function, leading to a general
class of sets of Gaussian-type modes; the polynomials and functions mentioned above, then
appear as special cases. The general class contains not only the sets of orthonormal Hermite–
Gaussian-type modes [5, 6]—with Hermite–Gaussian, Laguerre–Gaussian and Hermite–
Laguerre–Gaussian modes as examples—but also includes mode sets that are not orthonormal.
It will be shown that, in the non-orthonormal case, any set of modes has an associated
bi-orthonormal partner set from the same class; in the orthonormal case, this bi-orthonormal
partner set is then simply identical to the original set.

From the generating function, we will construct derivative relations and recurrence
relations between Gaussian-type modes, and from these we will derive a closed-form
expression for them. Furthermore, the evolution of Gaussian-type modes under linear
canonical transformation is studied in phase space.

2. Orthonormal Hermite–Gaussian-type modes

The recently introduced general class of sets of orthonormal modes [5, 6] Hn,m(r; K, L),
which we called Hermite–Gaussian-type modes because they can be generated by an
appropriate linear canonical transformation of the Hermite–Gaussian modes, was defined
by the generating function

21/2(det K)1/2 exp(−stMs + 2
√

2πstKr − πrtLr)

=
∞∑

n=0

∞∑
m=0

Hn,m(r; K, L)

(
2n+m

n!m!

)1/2

sn
x sm

y , (1)

where we have introduced the column vector s = (sx, sy)
t and three (possibly complex) 2 × 2

matrices K, L = Lt and M = M t, and where the superscript t denotes transposition. For the
common Hermite–Gaussian modes, separable in x and y, we thus have

K =
(

w−1
x 0
0 w−1

y

)
, L =

(
w−2

x 0
0 w−2

y

)
, M = I. (2)

As another example, we mention the common Laguerre–Gaussian modes, see, for instance,
[2], for which we have

K = 1

w
√

2

(
1 i
i 1

)
, L = 1

w2
I, M =

(
0 i
i 0

)
. (3)

The Hermite–Laguerre–Gaussian modes [4] arise for

K = i

w
√

2
(M − I) , L = 1

w2
I, M = −i

(
cos 2α sin 2α

sin 2α −cos 2α

)
, (4)

and reduce to Laguerre–Gaussian modes again for α = π/4 and to Hermite–Gaussian modes
for α = 0, although in a slightly modified form. Since we restricted ourselves in [5] and [6]
to orthonormal modes, the symmetric matrix M was completely defined by the non-singular
matrix K,

M = KK∗−1
, (5)

with the superscript ∗ denoting complex conjugation, and so was the (positive-definite) real
part Re L of the symmetric matrix L,

Re L = L + L∗

2
= K tK∗. (6)
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For this reason we did not need to include M as a parameter in Hn,m(r; K, L): the set
is completely determined by the matrices K (non-singular) and L (symmetric, and with its
positive-definite real part related to K through equation (6)).

3. Bi-orthonormal Gaussian-type modes

To extend the class of sets of orthonormal modes Hn,m(r; K, L) to a more general class of sets
Hn,m(r; K, L, L̃) that are no longer orthonormal, we will consider simultaneously a second
set of non-orthonormal modes from the same class, which is bi-orthonormal to the first one.
So we have the bi-orthonormality condition∫ ∫ ∞

−∞
Hn,m(r; K1, L1, L̃1)H∗

l,k(r; K2, L2, L̃2) dr = δnlδmk (7)

for the set Hn,m(r; K1, L1, L̃1) and its partner set Hl,k(r; K2, L2, L̃2), which by themselves
are still defined through the generating function (1). Note that—instead of including the
symmetric matrix M as a parameter—we have added a symmetric matrix L̃ as an additional
parameter in Hn,m(r; K, L, L̃), where L̃ is related to K, L and M as

L + L̃∗ = 2K tM−1K. (8)

The reason for using L̃ instead of M will become clear later; in particular, we will see that the
real part of L + L̃ should be positive definite, the condition which is more explicit than
the implicit condition for M that K tM−1K should have a positive-definite real part. As
these modes can no longer be generated by a linear canonical transformation of the common
Hermite–Gaussian modes, we drop the word Hermitian and we will call them Gaussian-type
modes, since all of them can be described by a generating function that has a Gaussian form.
We recall that knowledge of the associated bi-orthonormal partner set Hn,m(r; K2, L2, L̃2)

is valuable when we want to expand an arbitrary function f (r) in terms of the modes
Hn,m(r; K1, L1, L̃1) and we need to find the expansion coefficients cnm:

f (r) =
∞∑

n=0

∞∑
m=0

cnmHn,m(r; K1, L1, L̃1), (9)

cnm =
∫ ∫ ∞

−∞
f (r)H∗

n,m(r; K2, L2, L̃2) dr. (10)

To find the relations between K1, L1, M1 and K2, L2, M2, required by the bi-
orthonormality condition (7), we consider the expression

J =
∞∑

n=0

∞∑
m=0

∞∑
l=0

∞∑
k=0

(
2n+m

n!m!

)1/2

sn
x sm

y

(
2l+k

l!k!

)1/2

t lx t
k
y

×
∫ ∫ ∞

−∞
Hn,m(r; K1, L1, L̃1)H∗

l,k(r; K2, L2, L̃2) dr

= 2(det K1)
1/2(det K∗

2 )1/2 exp(−stM1s − ttM ∗
2 t)

×
∫ ∫ ∞

−∞
exp[2

√
2π(stK1 + ttK∗

2 )r − πrt(L1 + L∗
2)r] dr, (11)

where t = (tx, ty)
t in analogy with s = (sx, sy)

t, and where we have substituted from the
generating function (1). The integral in this expression is of the form∫ ∫ ∞

−∞
exp(−πrtPr − i2πrtq) dr = 1√

det P
exp(−πqtP −1q), (12)
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which is a straightforward extension to more dimensions of a similar relation in the one-
dimensional case; see, for instance, [7, equation (2.3.15.11)]. In equation (12) P = L1 + L∗

2
is a symmetric matrix and q = i

√
2/π

(
K t

1s + K∗
2

tt
)

is a column vector; for the integral to
converge, we have to require that the real part of P be positive definite, which at the same time
makes P non-singular, see appendix A. The integral in equation (11) then leads directly to

[det(L1 + L∗
2)]

−1/2 exp

{
st

[
K1

(
L1 + L∗

2

2

)−1

K t
1

]
s

}

× exp

{
tt

[
K2

(
L2 + L∗

1

2

)−1

K t
2

]∗
t

}

× exp

{
2st

[
K1

(
L1 + L∗

2

2

)−1

K∗
2

t

]
t

}

and we get

J = 2(det K1)
1/2(det K∗

2 )1/2[det(L + L∗)]−1/2

× exp

{
−st

[
M1 − K1

(
L1 + L∗

2

2

)−1

K t
1

]
s

}

× exp

{
−tt

[
M2 − K2

(
L2 + L∗

1

2

)−1

K t
2

]∗
t

}

× exp

{
2st

[
K1

(
L1 + L∗

2

2

)−1

K∗
2

t

]
t

}
. (13)

To get to the bi-orthonormality condition (7), we have to require that

M1 − K1

(
L1 + L∗

2

2

)−1

K t
1 = 0, (14)

M2 − K2

(
L2 + L∗

1

2

)−1

K t
2 = 0, (15)

K1

(
L1 + L∗

2

2

)−1

K∗
2

t = I. (16)

Note that bi-orthonormality imposes the additional conditions that K and M are non-
singular and that the symmetric matrix K tM−1K has a positive-definite real part. From
equations (14)–(16) we easily verify the explicit relations between K2, L2, M2 and
K1, L1, M1:

K∗
2 = M−1

1 K1, (17)

L∗
2 = 2K t

1M
−1
1 K1 − L1, (18)

M−1
2 = M ∗

1 . (19)

We are now prepared to identify the associated matrices L̃1 and L̃2 inHn,m(r; K1, L1, L̃1)

and Hl,k(r; K2, L2, L̃2) with L2 and L1, respectively, with the additional condition that the
real part of L + L̃ be positive definite. The two sets of modes Hn,m(r; K1, L1, L2) and
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Table 1. Bi-orthonormal sets of Gaussian-type modes Hn,m(r; K1, L1, L2) and
Hl,k(r; K2, L2, L1): (a) orthonormal Hermite–Gaussian-type modes, with 2K tK∗ = L + L∗;
(b) common Hermite–Gaussian modes (separable in x and y); (c) bi-orthonormal Gaussian-
type modes, with 2K̃ tK∗ = L + L̃∗; (d) Wünsche’s Hermite two-dimensional functions,
with K̃ tK∗ = I; (e) two-variable Hermite polynomials, with K = K t; (f) common Hermite
polynomials (separable in x and y).

Hn,m(r; K1, L1, L2) Hl,k(r; K2, L2, L1) M1 M2

(a) Hn,m(r; K, L, L) Hl,k(r; K, L, L) KK∗−1 KK∗−1

(b) Hn,m(r; I, I, I) Hl,k(r; I, I, I) I I

(c) Hn,m(r; K, L, L̃) Hl,k(r; K̃, L̃, L) K(K̃ tK∗)−1K t K̃(K tK̃∗)−1K̃ t

(d) Hn,m(r; K, I, I) Hl,k(r; K̃, I, I) KK t K̃K̃ t

(e) Hn,m(r; K, 0, 2K∗) Hl,k(r; I, 2K∗, 0) K K∗−1

(f) Hn,m(r; I, 0, 2I) Hl,k(r; I, 2I, 0) I I

Hl,k(r; K2, L2, L1) then form a bi-orthonormal set when equation (16) is satisfied. The
matrices M follow directly from equation (8) (or (14) and (15)); see also table 1 (row (c)).
We easily verify that for any non-orthonormal set of Gaussian-type modes Hn,m(r; K, L, L̃)

with arbitrarily given matrices K (non-singular), L (symmetric) and L̃ (also symmetric, and
satisfying the condition that the real part of L + L̃ be positive definite), we can always find its
associated bi-orthonormal partner set Hl,k(r; K̃, L̃, L). As an easy example, we mention that
the set of common Hermite polynomials Hn,m(r; I, 0, 2I), which arises for K = I, L = 0,
and M = I (and thus L̃ = 2I), has as its bi-orthonormal partner set the modes Hl,k(r; I, 2I, 0)

(and thus M̃ = I); see also table 1 (row (f)). The strictly orthonormal case that we considered
before in [5] and [6], arises when M = KK∗−1, see equation (5), and Re L = K tK∗, see
equation (6) (and thus L̃ = L); see also table 1 (row (a)) and, for the common Hermite–
Gaussian modes in particular, table 1 (row (b)).

Our results are in agreement with those of Wünsche [3] for the special choice L = L̃ = I.
From the bi-orthonormality condition (16) we easily get K̃∗ = K t−1, and we also have
M = KK t and M̃ ∗ = (KK t)−1; see also table 1 (row (d)). With these choices of K, L

and L̃, Wünsche’s relation [3, equation (5.9)] between the two bi-orthonormal sets of Hermite
two-dimensional functions Hn,m(r; K, I, I) and Hl,k(r; K̃, I, I), with K tK̃∗ = I, and our
bi-orthonormality relation (7) are identical. The results are also in agreement with the set of
two-variable Hermite polynomials [8, section 12.8] Hn,m(r; K, 0, 2K∗) with K = K t and
its bi-orthonormal partner set Hl,k(r; I, 2K∗, 0), for which the matrices M and M̃ read K
and K∗−1, respectively; see also table 1 (row (e)).

4. A closed-form expression for Gaussian-type modes

From the generating function (1) we derive the derivative relations for Hn,m(r) =
Hn,m(r; K, L, L̃)(

∂Hn,m(r)

∂x

∂Hn,m(r)

∂y

)
= −2πHn,m(r)L

(
x

y

)
+ 2

√
πK t

( √
nHn−1,m(r)√
mHn,m−1(r)

)
(20)

by differentiating it with respect to r, and the recurrence relations

2
√

πHn,m(r)K

(
x

y

)
=

( √
n + 1Hn+1,m(r)√
m + 1Hn,m+1(r)

)
+ M

( √
nHn−1,m(r)√
mHn,m−1(r)

)
(21)
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by differentiating it with respect to s. The derivative and recurrence relations can be combined
to yield(√

n + 1Hn+1,m(r)√
m + 1Hn,m+1(r)

)
=

[
√

πK̃∗t−1

L̃∗
(

x

y

)
− 1

2
√

π
K̃∗t−1

(
∂
∂x

∂
∂y

)]
Hn,m(r), (22)

where we have substituted MK t−1 = K̃∗t−1

and 2K − MK t−1
L = K̃∗t−1

L̃∗, which follow
directly from the bi-orthonormality conditions (14)–(16). Equation (22) can be written in an
operator notation as [9]

2
√

π(n + 1)Hn+1,m(r) = PxHn,m(r)

2
√

π(m + 1)Hn,m+1(r) = PyHn,m(r)
(23)

with the operators

Px = 2π(U11x + U12y) − Z11
∂

∂x
− Z12

∂

∂y

Py = 2π(U21x + U22y) − Z21
∂

∂x
− Z22

∂

∂y

(24)

and the matrices

U = K̃∗t−1

L̃∗ and Z = K̃∗t−1

. (25)

Note that the operators Px and Py commute, since ZU t = UZ t, and that we are thus led to
an alternative, closed-form expression for Gaussian-type modes:

Hn,m(r; K, L, L̃) = Pn
xPm

y H0,0(r; K, L)

2n+m
√

πn+mn!m!
. (26)

We remark that the set of modes is defined by using H0,0(r; K, L) =
21/2(det K)1/2 exp(−πrtLr) as its root, whereas the operators Px and Py depend on the
parameters K̃ and L̃ of the bi-orthonormal partner set. The case of strictly orthonormal
modes, with K̃ = K = (a + ib)−1 and L̃ = L = (d − ic)(a + ib)−1, was reported in [9].

5. Evolution under linear canonical transformations

We now let non-orthonormal Gaussian-type modes Hn,m(r; K, L, L̃) propagate through a
linear system fo(r) = L{fi(r)} whose input–output relationship is described by a linear
canonical transformation [10], and determine the generating function of the set of modes that
appear at the output of this system. In optical terms we are thus considering a lossless first-
order optical system—also called an ABCD system—described by its ray transformation
matrix T [11], which relates the position ri and direction qi of an incoming ray to the position
ro and direction qo of the outgoing ray:(

ro

qo

)
=

(
A B

C D

)(
ri

qi

)
≡ T

(
ri

qi

)
. (27)

The ray transformation matrix of such a system is real and symplectic, yielding the relations

ABt = BAt, CDt = DC t, ADt − BC t = I,
AtC = C tA, BtD = DtB, AtD − C tB = I,

(28)

or in a short-hand matrix notation,

T −1 = JT tJ with J = J−1 = J∗t = i

(
0 −I
I 0

)
. (29)
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Using the matrices A, B and D, and assuming that B is a non-singular matrix, we can
represent the canonical transformation by the Collins integral [12]

fo(ro) = 1√
det iB

∫ ∫ ∞

−∞
fi(ri) exp

[
iπ

(
rt

iB
−1Ari − 2rt

iB
−1ro + rt

oDB−1ro
)]

dri, (30)

where the output amplitude fo(r) is expressed in terms of the input amplitude fi(r). We
remark that a linear canonical transformation fo(r) = L{fi(r)} is unitary, i.e.,∫ ∫ ∞

−∞
fi,1(r)f ∗

i,2(r) dr =
∫ ∫ ∞

−∞
fo,1(r)f ∗

o,2(r) dr. (31)

This implies that bi-orthonormality properties for input signals also hold for the corresponding
output signals. Moreover, we easily see that the generating function undergoes the same
transformation L as the signal f (r) does.

With a Gaussian-type mode Hn,m(r; Ki, Li, L̃i) at the input of an ABCD system, we
denote the output mode by Hn,m(r; Ko, Lo, L̃o). Reasoning along the lines presented in [6],
we get the input–output relationships

Ko = Ki(A + BiLi)
−1, (32)

iLo = (C + DiLi)(A + BiLi)
−1, (33)

Mo = Mi − 2iKi (A + BiLi)
−1 BK t

i . (34)

Note that equation (33) is in fact the well-known bilinear ABCD law, and that equations (32)
and (33) can be combined into(

I
iLo

)
K−1

o =
(

A B

C D

) (
I

iLi

)
K−1

i . (35)

It is not difficult to see that for B = 0, in which case Collins integral (30) reduces to
fo(r) = fi(A

−1r) exp(iπrtCA−1r)/
√|det A|, these input–output relations remain valid.

They also remain valid if B is a singular matrix while at the same time B �= 0, see, for instance,
[10], where it was shown that any system with a singular matrix B can be represented as a
cascade of two subsystems whose matrices B are non-singular; in that case we may simply
use Collins integral (30) twice, for each subsystem separately. We thus conclude that while the
generating function (1) keeps its form when Gaussian-type modes undergo a linear canonical
transformation, we only have to replace the input matrices Ki, Li and Mi by the output
matrices Ko, Lo and Mo, respectively, in accordance with the input–output relationships
(32)–(34).

Equation (34), with which the propagation of the matrix M is described, can be neglected
if we work simultaneously with the non-orthonormal set of modes and its associated bi-
orthonormal partner set, and when we recall that bi-orthonormality properties are invariant
under a unitary transformation, see equation (31). For both sets of modes, the matrices K
and L in the output plane follow from equation (35), and the matrices M in the output plane
then follow easily from equation (8) (or (14) and (15)). We can act even more efficiently if we
are not interested in all the parameters of the associated bi-orthonormal set: we simply use
equation (35)—or equations (32) and (33)—for the propagation of K and L, combined with
the bilinear relation

iL̃o = (C + DiL̃i)(A + BiL̃i)
−1, (36)

cf equation (33), to find the propagation of the associated matrix L̃.
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If we express K−1
i,o in their real and imaginary parts, K−1

i,o = ai,o + ibi,o, and subsequently
express iLi,o as iLi,o = (ci,o + idi,o)Ki,o = (ci,o + idi,o)(ai,o + ibi,o)

−1, equation (35) can as
well be expressed in the form [6](

ao bo

co do

)
=

(
A B

C D

)(
ai bi

ci di

)
. (37)

This propagation law resembles equations (12) and (29) in [13], where i(a + ib),−i(c + id)

correspond to the ‘matricial rays’ Q, P [13, equation (11)], Q
√

π = iK−1 = i(a + ib) and
P

√
π = λLK−1 = −iλ(c + id), with λ the wavelength of the light. From [6] we learn that

in the case of strictly orthonormal modes, the 4 × 4 abcd matrices that arise in equation (37)
are symplectic, and the four sub-matrices a, b, c and d thus satisfy relations of the form (28).
Although such a nice property does not hold for non-orthonormal modes, we do have similar
relations for bi-orthonormal partner sets,

(ãtc − c̃ta) + (b̃td − d̃tb) = 0 and (ãtd − c̃tb) + (d̃ta − b̃tc) = 2I, (38)

immediately resulting from the bi-orthonormality equation (16). In the special case that L = L̃
we even have

ãtc = c̃ta, b̃td = d̃tb, ãtd − c̃tb = d̃ta − b̃tc = I, (39)

or, in short-hand matrix notation,

m̃tJm = J with m =
(

a b

c d

)
and m̃ =

(
ã b̃

c̃ d̃

)
, (40)

cf equations (28) and (29), and the two bi-orthonormal partner sets may then be called
‘bi-symplectic.’ We easily verify that bi-symplecticity is preserved under linear canonical
transformations: with mi and m̃i a pair of bi-symplectic matrices, m̃t

iJmi = J, and with T a
symplectic matrix, T tJT = J, describing the input–output relationship mo = Tmi between
the two matrices mi and mo, we immediately derive m̃t

oJmo = m̃t
iT

tJTmi = m̃t
iJmi = J.

6. Conclusion

We have introduced a general class of sets of non-orthonormal Gaussian-type modes, along
with their associated bi-orthonormal sets. The conditions between these two bi-orthonormal
sets of modes have been derived, based on their generating functions, and the relation with other
functions (the Hermite two-dimensional functions and the two-variable Hermite polynomials)
has been established. In addition to their rather implicit definition in terms of a generating
function, we have also derived a closed-form expression for these Gaussian-type modes.
We have shown that the evolution of non-orthonormal Gaussian-type modes under a linear
canonical transformation, described by a symplectic matrix, can be described by the same
mechanism as is used for the evolution of orthonormal Hermite–Gaussian-type modes, when,
simultaneously, the associated bio-orthonormal partners are taken into account. Finally, a
subclass has been observed for which the two bi-orthogonal partners show a property that
might be called bi-symplecticity.

It will be clear that the procedure of defining non-orthonormal Gaussian-type modes,
based on a generalization of the generating function of the common Hermite–Gaussian modes
as presented here, is not restricted to the two-dimensional case, but can easily be extended to
more dimensions.
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Appendix. Non-singularity of a symmetric matrix with a positive-definite real part

We consider a symmetric matrix P = P t = X + iY whose real part X is positive definite:
rtXr > 0 for any real vector r. In order for the matrix P to be singular, there should be
at least one vanishing eigenvalue λo = 0. Let us denote the corresponding eigenvector by
ro = xo + iyo, and we have the relation Pro = λoro = 0, leading to the following two
equations for the real and imaginary parts separately: Xxo = Y yo and Xyo = −Y xo.
We now consider the quadratic form xt

oXxo and substitute from these two equations:
xt

oXxo = xt
oY yo = yt

oY xo = −yt
oXyo. In view of the positive definiteness of the

matrix X , the relation xt
oXxo = −yt

oXyo cannot be true, and we conclude that a vanishing
eigenvalue does not exist. In other words, a symmetric matrix whose real part is positive
definite, is non-singular.
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[8] Erdélyi A (ed) 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill)
[9] Alieva T and Bastiaans M J 2005 Mode mapping in paraxial lossless optics Opt. Lett. 30 1461

[10] Moshinsky M and Quesne C 1971 Linear canonical transformations and their unitary representations J. Math.
Phys. 12 1772

[11] Luneburg R K 1966 Mathematical Theory of Optics (Berkeley, CA: University of California Press)
[12] Collins S A 1970 Lens-system diffraction integral written in terms of matrix optics J. Opt. Soc. Am. 60 1168
[13] Arnaud J A 1971 Mode coupling in first-order optics J. Opt. Soc. Am. 61 751


	1. Introduction
	2. Orthonormal Hermite--Gaussian-type modes
	3. Bi-orthonormal Gaussian-type modes
	4. A closed-form expression for Gaussian-type modes
	5. Evolution under linear canonical transformations
	6. Conclusion
	Acknowledgments
	Appendix. Non-singularity of a symmetric matrix with a positive-definite real part
	References

